8,17 and plots

master
Dmitry Maylarov 4 years ago
parent 16965ded91
commit e7e58a60d2

@ -111,7 +111,7 @@ class Investing(bt.Strategy):
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log("Order Canceled/Margin/Rejected")
print(order.status, [order.Canceled, order.Margin, order.Rejected])
print(order, order.status, [order.Canceled, order.Margin, order.Rejected])
self.order = None
@ -176,8 +176,8 @@ class QDCA(DCA):
class SmaCross(Investing):
params = dict(
pfast=50, # period for the fast moving average
pslow=200, # period for the slow moving average
pfast=8, # period for the fast moving average
pslow=17, # period for the slow moving average
)
# list of parameters which are configurable for the strategy
def __init__(self, *args, **kwargs):
@ -187,12 +187,10 @@ class SmaCross(Investing):
self.crossover = bt.ind.CrossOver(sma1, sma2) # crossover signal
def next(self):
if not self.position: # not in the market
if self.crossover > 0: # if fast crosses slow to the upside
self.order_target_value(target=self.broker.get_cash()) # enter long
elif self.crossover < 0: # in the market & cross to the downside
self.close() # close long position
if self.crossover > 0: # if fast crosses slow to the upside
self.order_target_value(
target=self.broker.get_value() - reserve
) # enter long
class SmaVA(SmaCross):

@ -6,21 +6,29 @@ import pandas as pd
if __name__ == "__main__":
stockList = ["^GSPC"]
monthly_params = dict(sum=100000, coef=1.005, t_rate=1 + 0.02 / 12)
monthly_params = dict(sum=1000, coef=1, t_rate=1 + 0.02 / 12)
# startDate = datetime.datetime.fromisoformat("2000-01-01")
# endDate = datetime.datetime.fromisoformat("2022-01-01")
print(stockList[0])
stockData = lib.get_data(
stockList[0],
)
stockData = lib.get_data(stockList[0])
start_date = stockData.index[0]
year_step = 5
print(
"Investing monthly, increasing {:.2f}%, starting from ${}".format(
(monthly_params["coef"] * 100) - 100,
monthly_params["sum"],
)
label_string = "Investing to {} monthly over {} years, increasing {:.2f}%, starting from ${}".format(
stockList[0],
year_step,
(monthly_params["coef"] * 100) - 100,
monthly_params["sum"],
)
print(label_string)
plot_param = "annual%"
strategies = (
st.DCA,
st.QDCA,
st.SmaCross,
)
df_comp = pd.DataFrame(index=list(st.__name__ for st in strategies))
df_vwr = pd.DataFrame(index=list(st.__name__ for st in strategies))
for start_year in range(start_date.year, datetime.datetime.today().year, year_step):
start_date = datetime.date(start_year, 1, 1)
end_date = datetime.date(start_year + year_step - 1, 12, 31)
@ -38,9 +46,18 @@ if __name__ == "__main__":
newdf = pd.concat(
[
lib.test_strategy(stockData, strategy, monthly_params)
for strategy in (st.DCA, st.QDCA)
for strategy in strategies
]
)
print(newdf.to_string())
df_comp[start_year] = newdf[plot_param].values
# print(df[["annual%", "froi%", "cost", "total_value", "max_dd%", "max_md"]])
# print(newdf["annual%"])
print(df_comp.to_string())
df_comp.T.plot()
plt.grid()
plt.title(label_string)
plt.ylabel(plot_param)
plt.xlabel("year")
plt.show()

Loading…
Cancel
Save