|
|
|
@ -6,21 +6,29 @@ import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if __name__ == "__main__":
|
|
|
|
stockList = ["^GSPC"]
|
|
|
|
stockList = ["^GSPC"]
|
|
|
|
monthly_params = dict(sum=100000, coef=1.005, t_rate=1 + 0.02 / 12)
|
|
|
|
monthly_params = dict(sum=1000, coef=1, t_rate=1 + 0.02 / 12)
|
|
|
|
# startDate = datetime.datetime.fromisoformat("2000-01-01")
|
|
|
|
# startDate = datetime.datetime.fromisoformat("2000-01-01")
|
|
|
|
# endDate = datetime.datetime.fromisoformat("2022-01-01")
|
|
|
|
# endDate = datetime.datetime.fromisoformat("2022-01-01")
|
|
|
|
print(stockList[0])
|
|
|
|
print(stockList[0])
|
|
|
|
stockData = lib.get_data(
|
|
|
|
stockData = lib.get_data(stockList[0])
|
|
|
|
stockList[0],
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
start_date = stockData.index[0]
|
|
|
|
start_date = stockData.index[0]
|
|
|
|
year_step = 5
|
|
|
|
year_step = 5
|
|
|
|
print(
|
|
|
|
label_string = "Investing to {} monthly over {} years, increasing {:.2f}%, starting from ${}".format(
|
|
|
|
"Investing monthly, increasing {:.2f}%, starting from ${}".format(
|
|
|
|
stockList[0],
|
|
|
|
(monthly_params["coef"] * 100) - 100,
|
|
|
|
year_step,
|
|
|
|
monthly_params["sum"],
|
|
|
|
(monthly_params["coef"] * 100) - 100,
|
|
|
|
)
|
|
|
|
monthly_params["sum"],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
print(label_string)
|
|
|
|
|
|
|
|
plot_param = "annual%"
|
|
|
|
|
|
|
|
strategies = (
|
|
|
|
|
|
|
|
st.DCA,
|
|
|
|
|
|
|
|
st.QDCA,
|
|
|
|
|
|
|
|
st.SmaCross,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df_comp = pd.DataFrame(index=list(st.__name__ for st in strategies))
|
|
|
|
|
|
|
|
df_vwr = pd.DataFrame(index=list(st.__name__ for st in strategies))
|
|
|
|
for start_year in range(start_date.year, datetime.datetime.today().year, year_step):
|
|
|
|
for start_year in range(start_date.year, datetime.datetime.today().year, year_step):
|
|
|
|
start_date = datetime.date(start_year, 1, 1)
|
|
|
|
start_date = datetime.date(start_year, 1, 1)
|
|
|
|
end_date = datetime.date(start_year + year_step - 1, 12, 31)
|
|
|
|
end_date = datetime.date(start_year + year_step - 1, 12, 31)
|
|
|
|
@ -38,9 +46,18 @@ if __name__ == "__main__":
|
|
|
|
newdf = pd.concat(
|
|
|
|
newdf = pd.concat(
|
|
|
|
[
|
|
|
|
[
|
|
|
|
lib.test_strategy(stockData, strategy, monthly_params)
|
|
|
|
lib.test_strategy(stockData, strategy, monthly_params)
|
|
|
|
for strategy in (st.DCA, st.QDCA)
|
|
|
|
for strategy in strategies
|
|
|
|
]
|
|
|
|
]
|
|
|
|
)
|
|
|
|
)
|
|
|
|
print(newdf.to_string())
|
|
|
|
print(newdf.to_string())
|
|
|
|
|
|
|
|
df_comp[start_year] = newdf[plot_param].values
|
|
|
|
# print(df[["annual%", "froi%", "cost", "total_value", "max_dd%", "max_md"]])
|
|
|
|
# print(df[["annual%", "froi%", "cost", "total_value", "max_dd%", "max_md"]])
|
|
|
|
# print(newdf["annual%"])
|
|
|
|
# print(newdf["annual%"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(df_comp.to_string())
|
|
|
|
|
|
|
|
df_comp.T.plot()
|
|
|
|
|
|
|
|
plt.grid()
|
|
|
|
|
|
|
|
plt.title(label_string)
|
|
|
|
|
|
|
|
plt.ylabel(plot_param)
|
|
|
|
|
|
|
|
plt.xlabel("year")
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|