You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

231 lines
6.8 KiB

import datetime
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas_datareader import data as pdr
import backtrader as bt
stockList = ["SWPPX"]
month_sum = 500 # usd
reserve = 5 # usd for comms etc
# startDate = datetime.datetime.fromisoformat("2000-01-01")
# endDate = datetime.datetime.fromisoformat("2022-01-01")
class LSI(bt.Strategy):
def start(self):
self.val_start = self.broker.get_cash()
def nextstart(self):
size = math.floor((self.broker.get_cash() - 10) / self.data[0])
self.buy(size=size)
def stop(self):
# calculate actual returns
self.roi = (self.broker.get_value() / self.val_start) - 1
print("Starting Value: ${:,.2f}".format(self.val_start))
print("ROI: {:.2f}%".format(self.roi * 100.0))
print(
"Annualised: {:.2f}%".format(
100 * ((1 + self.roi) ** (365 / (endDate - actualStart).days) - 1)
)
)
print(
"Gross Return: ${:,.2f}".format(self.broker.get_value() - self.val_start)
)
class PercentageCommisionScheme(bt.CommInfoBase):
params = (
("commission", 0.004),
("stocklike", True),
("commtype", bt.CommInfoBase.COMM_PERC),
)
def _getcommission(self, size, price, pseudoexec):
return size * price * self.p.commission + 4 # 290rub/month
class FormulaInvesting(bt.Strategy):
def __init__(self):
self.order = None
self.cost = 0 # no comms
self.comms = 0
self.units = 0
self.times = 0
self.periods = 0
def log(self, txt, dt=None):
dt = dt or self.datas[0].datetime.date(0)
# print("%s, %s" % (dt.isoformat(), txt))
def start(self):
self.broker.set_fundmode(fundmode=True, fundstartval=100.0)
self.cash_start = self.broker.get_cash()
self.val_start = 100.0
# ADD A TIMER
self.add_timer(
when=bt.timer.SESSION_START,
monthdays=[1],
monthcarry=True
# timername='buytimer',
)
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
return
if order.status in [order.Completed]:
if order.isbuy():
self.units += order.executed.size
self.cost += order.executed.value
elif order.issell():
self.units -= order.executed.size
self.log(
"%s Price %.2f, Units %.0f, Value %.2f, Comm %.2f, "
% (
"BUY" if order.isbuy else "SELL",
order.executed.price,
order.executed.size,
order.executed.value,
order.executed.comm,
)
)
self.comms += order.executed.comm
self.times += 1
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log("Order Canceled/Margin/Rejected")
print(order.status, [order.Canceled, order.Margin, order.Rejected])
self.order = None
def calc_params(self):
# calculate actual returns
self.froi = self.broker.get_fundvalue() - self.val_start
return (
# Annual
100 * ((1 + self.froi / 100) ** (365 / (endDate - actualStart).days) - 1),
self.froi,
self.cost,
self.broker.get_value() + self.broker.get_cash(),
self.times,
self.units,
self.comms,
)
def notify_timer(self, timer, when, *args):
self.periods += 1
self.broker.add_cash(month_sum)
self.formula()
class VA(FormulaInvesting):
def formula(self):
target_value = min(self.periods * month_sum - reserve, self.broker.get_value())
self.order_target_value(target=target_value)
class DCA(FormulaInvesting):
def formula(self):
target_value = self.broker.get_value() - reserve
self.order_target_value(target=target_value)
class QVA(VA):
def formula(self):
if not self.periods % 3:
super().formula()
class QDCA(DCA):
def formula(self):
if not self.periods % 3:
super().formula()
def run(strategy, data, fund_mode=False):
if fund_mode:
cerebro = bt.Cerebro()
cerebro.addobserver(bt.observers.FundShares)
else:
cerebro = bt.Cerebro(stdstats=False)
cerebro.addobserver(bt.observers.Broker)
cerebro.addobserver(bt.observers.BuySell)
cerebro.adddata(data)
cerebro.addstrategy(strategy)
# Broker Information
broker_args = dict(coc=True)
cerebro.broker = bt.brokers.BackBroker(**broker_args)
comminfo = PercentageCommisionScheme()
cerebro.broker.addcommissioninfo(comminfo)
if fund_mode:
cerebro.broker.set_fundmode(True)
cerebro.broker.set_cash(month_sum)
cerebro.addanalyzer(bt.analyzers.DrawDown, _name="drawdown")
cerebro.addanalyzer(bt.analyzers.VWR, _name="returns")
cerebro.addanalyzer(
bt.analyzers.TimeReturn, timeframe=bt.TimeFrame.NoTimeFrame, _name="tr"
)
thestrats = cerebro.run()
thestrat = thestrats[0]
# cerebro.plot(iplot=False, style="candlestick")
return thestrat
if __name__ == "__main__":
df = pd.DataFrame(
columns=[
"annual%",
"froi",
"cost",
"total_value",
"times",
"units",
"comms",
"max_dd_len",
"max_dd",
"max_md",
"twr",
]
)
# import data
def get_data(stocks, start, end):
stockData = pdr.get_data_yahoo(stocks, start, end)
return stockData
for period_years in (1, 2, 5, 10, 15, 20, 25):
endDate = datetime.datetime.now()
startDate = endDate - datetime.timedelta(days=period_years * 365)
stockData = get_data(stockList[0], startDate, endDate)
actualStart: datetime.datetime = stockData.index[0]
data = bt.feeds.PandasData(dataname=stockData)
for i, strategy in enumerate((DCA, QDCA)): # , VA, QVA)):
therun = run(strategy, data)
dd = therun.analyzers.drawdown
ret = therun.analyzers.returns
# tr = thestrat.analyzers.tr
# print(next(reversed(tr.get_analysis())))
# print(tr.get_analysis())
df.loc[strategy.__name__] = therun.calc_params() + (
dd.get_analysis().max.len,
dd.get_analysis().max.drawdown,
dd.get_analysis().max.moneydown,
ret.get_analysis()["vwr"],
)
print("Starting from:", actualStart)
print("Time in Market: {:.1f} years".format((endDate - actualStart).days / 365))
print(df[["annual%", "froi", "cost", "total_value"]])
# print(df)