You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
6.9 KiB
225 lines
6.9 KiB
import datetime
|
|
import math
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from pandas_datareader import data as pdr
|
|
import backtrader as bt
|
|
|
|
stockList = ["VOO"]
|
|
total_days_in_market = 365 * 10
|
|
month_sum = 500 # usd
|
|
reserve = 5 # usd for comms etc
|
|
startDate = datetime.datetime.fromisoformat("2018-01-01")
|
|
|
|
|
|
# import data
|
|
def get_data(stocks, start, end):
|
|
stockData = pdr.get_data_yahoo(stocks, start, end)
|
|
return stockData
|
|
|
|
|
|
endDate = datetime.datetime.now()
|
|
# startDate = endDate - datetime.timedelta(days=total_days_in_market)
|
|
stockData = get_data(stockList[0], startDate, endDate)
|
|
|
|
actualStart: datetime.datetime = stockData.index[0]
|
|
print(actualStart)
|
|
|
|
data = bt.feeds.PandasData(dataname=stockData)
|
|
|
|
|
|
class LSI(bt.Strategy):
|
|
def start(self):
|
|
self.val_start = self.broker.get_cash()
|
|
|
|
def nextstart(self):
|
|
size = math.floor((self.broker.get_cash() - 10) / self.data[0])
|
|
self.buy(size=size)
|
|
|
|
def stop(self):
|
|
# calculate actual returns
|
|
self.roi = (self.broker.get_value() / self.val_start) - 1
|
|
print("Starting Value: ${:,.2f}".format(self.val_start))
|
|
print("ROI: {:.2f}%".format(self.roi * 100.0))
|
|
print(
|
|
"Annualised: {:.2f}%".format(
|
|
100 * ((1 + self.roi) ** (365 / (endDate - actualStart).days) - 1)
|
|
)
|
|
)
|
|
print(
|
|
"Gross Return: ${:,.2f}".format(self.broker.get_value() - self.val_start)
|
|
)
|
|
|
|
|
|
class PercentageCommisionScheme(bt.CommInfoBase):
|
|
paras = (
|
|
("commission", 0.004),
|
|
("stocklike", True),
|
|
("commtype", bt.CommInfoBase.COMM_PERC),
|
|
)
|
|
|
|
def _getcommission(self, size, price, pseudoexec):
|
|
return self.p.commission
|
|
|
|
|
|
class FormulaInvesting(bt.Strategy):
|
|
def __init__(self):
|
|
self.order = None
|
|
self.totalcost = 0
|
|
self.comms = 0
|
|
self.units = 0
|
|
self.times = 0
|
|
self.periods = 0
|
|
|
|
def log(self, txt, dt=None):
|
|
dt = dt or self.datas[0].datetime.date(0)
|
|
print("%s, %s" % (dt.isoformat(), txt))
|
|
|
|
def start(self):
|
|
# self.broker.set_fundmode(fundmode=True, fundstartval=100.0)
|
|
|
|
self.cash_start = self.broker.get_cash()
|
|
self.val_start = 100.0
|
|
|
|
# ADD A TIMER
|
|
self.add_timer(
|
|
when=bt.timer.SESSION_START,
|
|
monthdays=[1],
|
|
monthcarry=True
|
|
# timername='buytimer',
|
|
)
|
|
|
|
def notify_order(self, order):
|
|
if order.status in [order.Submitted, order.Accepted]:
|
|
return
|
|
|
|
if order.status in [order.Completed]:
|
|
if order.isbuy():
|
|
self.log(
|
|
"BUY EXECUTED, Price %.2f, Cost %.2f, Comm %.2f, Size %.0f"
|
|
% (
|
|
order.executed.price,
|
|
order.executed.value,
|
|
order.executed.comm,
|
|
order.executed.size,
|
|
)
|
|
)
|
|
|
|
self.units += order.executed.size
|
|
self.totalcost += order.executed.value + order.executed.comm
|
|
self.comms += order.executed.comm
|
|
|
|
elif order.issell():
|
|
self.log(
|
|
"SELL EXECUTED, Price %.2f, Cost %.2f, Comm %.2f, Size %.0f"
|
|
% (
|
|
order.executed.price,
|
|
order.executed.value,
|
|
order.executed.comm,
|
|
order.executed.size,
|
|
)
|
|
)
|
|
self.units -= order.executed.size
|
|
# self.totalcost += order.executed.value
|
|
self.totalcost += order.executed.comm
|
|
self.comms -= order.executed.value
|
|
|
|
self.times += 1
|
|
|
|
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
|
|
self.log("Order Canceled/Margin/Rejected")
|
|
print(order.status, [order.Canceled, order.Margin, order.Rejected])
|
|
|
|
self.order = None
|
|
|
|
def stop(self):
|
|
self.calc_params()
|
|
|
|
def calc_params(self):
|
|
# calculate actual returns
|
|
self.roi = (self.broker.get_value() / self.cash_start) - 1
|
|
self.froi = self.broker.get_fundvalue() - self.val_start
|
|
value = self.datas[0].close * self.units + self.broker.get_cash()
|
|
print("Time in Market: {:.1f} years".format((endDate - actualStart).days / 365))
|
|
print("#Times: {:.0f}".format(self.times))
|
|
print("#Units: {:.0f}".format(self.units))
|
|
print("Value: ${:,.2f}".format(value))
|
|
print("Commissions: ${:.2f}".format(self.froi))
|
|
print("Cost: ${:,.2f}".format(self.totalcost))
|
|
print("Gross Return: ${:,.2f}".format(value - self.totalcost))
|
|
print("Gross %: {:.2f}%".format((value / self.totalcost - 1) * 100))
|
|
print("ROI: {:.2f}%".format(100.0 * self.roi))
|
|
print("Fund Value: {:.2f}%".format(self.froi))
|
|
print(
|
|
"Annualised: {:.2f}%".format(
|
|
100
|
|
* ((1 + self.froi / 100) ** (365 / (endDate - actualStart).days) - 1)
|
|
)
|
|
)
|
|
|
|
def notify_timer(self, timer, when, *args):
|
|
self.periods += 1
|
|
self.broker.add_cash(month_sum)
|
|
self.formula()
|
|
|
|
|
|
class VA(FormulaInvesting):
|
|
def formula(self):
|
|
target_value = min(self.periods * month_sum - reserve, self.broker.get_value())
|
|
self.order_target_value(target=target_value)
|
|
|
|
|
|
class DCA(FormulaInvesting):
|
|
def formula(self):
|
|
target_value = self.broker.get_value() - reserve
|
|
self.order_target_value(target=target_value)
|
|
|
|
|
|
class QVA(VA):
|
|
def formula(self):
|
|
if not self.periods % 3:
|
|
super().formula()
|
|
|
|
|
|
class QDCA(DCA):
|
|
def formula(self):
|
|
if not self.periods % 3:
|
|
super().formula()
|
|
|
|
|
|
def run(strategy, data):
|
|
cerebro = bt.Cerebro(stdstats=False)
|
|
|
|
cerebro.addobserver(bt.observers.Broker)
|
|
cerebro.addobserver(bt.observers.BuySell)
|
|
|
|
cerebro.adddata(data)
|
|
cerebro.addstrategy(strategy)
|
|
print("-" * 50)
|
|
print(strategy.__name__)
|
|
|
|
# Broker Information
|
|
broker_args = dict(coc=True)
|
|
cerebro.broker = bt.brokers.BackBroker(**broker_args)
|
|
comminfo = PercentageCommisionScheme()
|
|
cerebro.broker.addcommissioninfo(comminfo)
|
|
|
|
cerebro.broker.set_cash(month_sum)
|
|
# cerebro.addobserver(bt.observers.FundValue)
|
|
# cerebro.addobserver(bt.observers.FundShares)
|
|
cerebro.addanalyzer(bt.analyzers.DrawDown, _name="drawdown")
|
|
cerebro.addanalyzer(bt.analyzers.VWR, _name="returns")
|
|
thestrats = cerebro.run()
|
|
thestrat = thestrats[0]
|
|
dd = thestrat.analyzers.drawdown
|
|
print(dd.get_analysis().max)
|
|
ret = thestrat.analyzers.returns
|
|
print(ret.get_analysis())
|
|
cerebro.plot(iplot=False, style="candlestick")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
for strategy in (DCA, QDCA, VA, QVA):
|
|
run(strategy, data)
|