You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.2 KiB
101 lines
3.2 KiB
import datetime
|
|
import math
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from pandas_datareader import data as pdr
|
|
import backtrader as bt
|
|
|
|
import strategies as st
|
|
|
|
# import data
|
|
def get_data(stocks, start, end):
|
|
stockData = pdr.get_data_yahoo(stocks, start, end)
|
|
return stockData
|
|
|
|
|
|
def run(strategy, data, fund_mode=False):
|
|
if fund_mode:
|
|
cerebro = bt.Cerebro()
|
|
cerebro.addobserver(bt.observers.FundShares)
|
|
else:
|
|
cerebro = bt.Cerebro(stdstats=False)
|
|
cerebro.addobserver(bt.observers.Broker)
|
|
cerebro.addobserver(bt.observers.BuySell)
|
|
|
|
cerebro.adddata(data)
|
|
cerebro.addstrategy(strategy)
|
|
|
|
# Broker Information
|
|
broker_args = dict(coc=True)
|
|
cerebro.broker = bt.brokers.BackBroker(**broker_args)
|
|
comminfo = st.PercentageCommisionScheme()
|
|
cerebro.broker.addcommissioninfo(comminfo)
|
|
|
|
if fund_mode:
|
|
cerebro.broker.set_fundmode(True)
|
|
|
|
cerebro.broker.set_cash(st.month_sum)
|
|
cerebro.addanalyzer(bt.analyzers.DrawDown, _name="drawdown")
|
|
cerebro.addanalyzer(bt.analyzers.VWR, _name="returns")
|
|
cerebro.addanalyzer(
|
|
bt.analyzers.TimeReturn, timeframe=bt.TimeFrame.NoTimeFrame, _name="tr"
|
|
)
|
|
thestrats = cerebro.run()
|
|
thestrat = thestrats[0]
|
|
# cerebro.plot(iplot=False, style="candlestick")
|
|
return thestrat
|
|
|
|
|
|
if __name__ == "__main__":
|
|
df = pd.DataFrame(
|
|
columns=[
|
|
"froi",
|
|
"cost",
|
|
"total_value",
|
|
"times",
|
|
"units",
|
|
"comms",
|
|
"annual%",
|
|
"max_dd_len",
|
|
"max_dd",
|
|
"max_md",
|
|
"twr",
|
|
"tr",
|
|
]
|
|
)
|
|
|
|
stockList = ["SWPPX"]
|
|
# startDate = datetime.datetime.fromisoformat("2000-01-01")
|
|
# endDate = datetime.datetime.fromisoformat("2022-01-01")
|
|
print(stockList[0])
|
|
for period_years in (1, 2, 5, 10, 15, 20, 25):
|
|
endDate = datetime.datetime.now()
|
|
startDate = endDate - datetime.timedelta(days=period_years * 365)
|
|
stockData = get_data(stockList[0], startDate, endDate)
|
|
actualStart: datetime.datetime = stockData.index[0]
|
|
data = bt.feeds.PandasData(dataname=stockData)
|
|
|
|
for i, strategy in enumerate((st.DCA, st.QDCA, st.VA, st.QVA)):
|
|
therun = run(strategy, data)
|
|
dd = therun.analyzers.drawdown
|
|
ret = therun.analyzers.returns
|
|
tr = therun.analyzers.tr
|
|
# print(next(reversed(tr.get_analysis())))
|
|
params = therun.calc_params()
|
|
annual = 100 * (
|
|
(1 + params[0] / 100) ** (365 / (endDate - actualStart).days) - 1
|
|
)
|
|
df.loc[strategy.__name__] = therun.calc_params() + (
|
|
annual,
|
|
dd.get_analysis().max.len,
|
|
dd.get_analysis().max.drawdown,
|
|
dd.get_analysis().max.moneydown,
|
|
ret.get_analysis()["vwr"],
|
|
list(tr.get_analysis().items())[0][1],
|
|
)
|
|
print("Starting from:", actualStart)
|
|
print("Time in Market: {:.1f} years".format((endDate - actualStart).days / 365))
|
|
# print(df[["annual%", "froi", "cost", "total_value", "max_dd", "max_md"]])
|
|
print(df)
|